THEOREM 1.2 Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the limits

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K.$$

1. Scalar multiple:
$$\lim_{x \to c} [bf(x)] = bL$$

2. Sum or difference:
$$\lim_{x\to c} [f(x) \pm g(x)] = L \pm K$$

3. Product:
$$\lim_{x \to c} [f(x)g(x)] = LK$$

4. Quotient:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \quad K \neq 0$$

5. Power:
$$\lim_{x \to c} [f(x)]^n = L^n$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.

THEOREM 1.5 The Limit of a Composite Function

If f and g are functions such that $\lim_{x\to c} g(x) = L$ and $\lim_{x\to L} f(x) = f(L)$, then

$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(L).$$

A proof of this theorem is given in Appendix A.

See LarsonCalculus.com for Bruce Edwards's video of this proof.