Hame____

① In the xy-plane, the graph of the parametric equation 0x = 5t + 2 and y = 3t, for $-3 \le t \le 3$ is a line segment with slope.

A.) 3/5 B.) 3/5 C.) 3 D.) 5 E.) 13

a) If
$$x=t^2-1$$
 and $y=2e^t$, then $\frac{dy}{dx}=A$.) $\frac{e^t}{t}$ B.) $\frac{2e^t}{t}$ C.) $\frac{e^{t+1}}{t}$ D.) $\frac{4e^t}{2t-1}$ E.) e^t

Given
$$x=2\sin\theta$$
 and $y=\cos2\theta$ find $\frac{dy}{dx}$

A.) $\frac{\sin2\theta}{\cos2\theta}$ B.) $\frac{\cos\theta}{\sin2\theta}$ C.) $\frac{-\cos\theta}{\sin2\theta}$ D) $\frac{-\sin2\theta}{\cos\theta}$

A.)
$$y = 3_2 x + 1$$
 B.) $y = x - 3$ C.) $y = 3_2 - x$ D.) $y = -1$ E.) $y = \frac{1}{2}x - 1$

(5)

If $x = e^t$ and $y = (t+3)^2$, then $\frac{dy}{dx}$ at t = 0 is

- (A) 3
- (B) 6
- (C) 9
- (D) 12
- (E) 15

- A particle moves on the curve $y = \ln(\sqrt{x})$ so that the x-component has velocity $x'(t) = e^t + 1$ for t > 0. At time t = 0, the particle is at the point $(2, \frac{1}{2} \ln 2)$. At time t = 1, the particle is at the point
 - (A) $(e^2,1)$
 - (B) $(e^4,2)$
 - (C) $\left((e+1), \frac{1}{2}\ln(e+1)\right)$
 - (D) $\left((e+2), \frac{1}{2}\ln(e+2)\right)$
 - (E) $\left((e+4), \frac{1}{2}\ln(e+4)\right)$
- An object moves along a curve in the xy-plane so that its position at any time $t \ge 0$ is given by $(t^2 + 1, te^{t/2})$. What is the speed of the object at time t = 2?
 - (A) 3.94
- (B) 4.82
- (C) 6.75
- (D) 8.61
- (E) 12.43

8

?). A particle moves in the xy-plane so that its position at any time t is given by $x(t) = \arcsin t$ and $y(t) = \ln \sqrt{1 - t^2}$. What is the total distance traveled by the particle from $t = -\frac{1}{2}$ to $t = \frac{1}{2}$?

- (A) 0.877
- (B) 1.099
- (C) 1.206
- (D) 1.586
- (E) 2.243

For what value(s) of t does the curve defined by the parametric equations $x = t^3 - 3t^2 + 2$ and $y = t^4 - 7t$ have a vertical tangent?

- (A) 0 only
- (B) 1 only
- (C) 2 only
- (D) 0 and 1 only
- (E) 0 and 2 only

The length of the path described by the parametric equations $x = \frac{t}{1+t}$, $y = \ln(1+t)$, for $0 \le t \le 1$, is given by

(A)
$$\int_0^1 \sqrt{\frac{t^2}{(1+t)^2} + \left[\ln(1+t)\right]^2} dt$$

(B)
$$\int_0^1 \sqrt{\frac{1}{(1+t)^2} + \frac{1}{(1+t)}} dt$$

(C)
$$\int_0^1 \sqrt{\frac{1}{(1+t)^4} + \frac{1}{(1+t)^2}} dt$$

(D)
$$\int_0^1 \sqrt{\frac{t}{(1+t)^4} + \frac{1}{(1+t)}} dt$$

(E)
$$\int_0^1 \sqrt{\frac{(t+1)}{(1+t)^2}} dt$$

. The position of a particle moving in a xy-plane is given by the parametric equations $x(t) = t^3 - 3t^2$ and $y(t) = t - \ln t^2$. For what values of t is the particle at rest?

- (A) -1 only
- (B) 0 only
- (C) 2 only
- (D) -1 and 2 only (E) 0 and 2 only

Find the slope and concavity of the parametric equation, X=JE and $y=\frac{1}{4}(L^2-4)$, $t\geq 0$, at the point (2,3)

(A), m=4 concave up (B) m=-4 concave up (c) m= 1/4 concave down

(D) m = -8 concave up

(E) m= 8 concave up